Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation

نویسنده

  • Wei Hu
چکیده

Title of Dissertation: DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION Wei Hu, Doctor of Philosophy, 2005 Dissertation directed by: Professor Norman M. Wereley Department of Aerospace Engineering Conventional lag dampers use passive materials, such as elastomers, to dissipate energy and provide stiffness, but their damping and stiffness levels diminish markedly as amplitude of damper motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the advantages of both elastomeric materials and MR fluids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In such a damper configuration, magnetic valves are incorporated into the chamber enclosed by elastomeric layers. Preliminary MRFE damper design analysis was conducted using quasi-steady Bingham-plastic MR flow mode analysis, and MRFE damper performance was evaluated analytically. To investigate the feasibility of using a combination of magnetorheological (MR) fluids and elastomeric materials for augmentation of lag mode damping in helicopters, a semi-active linear stroke MRFE lag damper was developed as a retrofit to an existing elastomeric helicopter lag damper. Consistent with sinusoidal loading conditions for a helicopter lag damper, single frequency (lag/rev) and dual frequency (lag/rev and 1/rev) sinusoidal loadings were applied to the MRFE damper. Complex modulus and equivalent damping were used to compare the characteristics of the MRFE damper with the passive elastomeric damper. The experimental damping characteristics of the MRFE damper were consistent with the analytical results obtained from the Bingham plastic analysis of the MR valve. Based on measurements, the Field-OFF MRFE characteristics are similar to the passive elastomeric damping, and controllable damping as a function of different flight conditions is also feasible as the applied current is varied in the MR valve. A second key objective of the present research is to develop an analytical model to describe the nonlinear behavior demonstrated by an MRFE damper. Since the damping behavior of both elastomers and MR fluids is dominated by friction mechanisms, a rate-dependent elasto-slide element is developed to describe the friction characteristics. An MR model developed from a single elastoslide element successfully emulated the yield behavior of the MR damper, and this model captured nonlinear amplitude and frequency dependent behavior of MR dampers using constant model parameters. Meanwhile, using a distributed elasto-slide structure, an elastomeric model was developed to describe the stiffness and damping behavior of the elastomer as the amplitude of excitation increases. The fidelity of this five parameters time domain model is demonstrated by good correlation between modeling and experimental results for both the complex modulus and steady-state hysteresis cycles. Since an MRFE damper was shown to be a linear combination of the elastomeric and MR component, a time domain MRFE damper model was constructed based on the linear combination of the MR and elastomer models to describe the nonlinear behavior of the MRFE damper. Good correlation between the model and experimental data demonstrates the feasibility of the MRFE model for future MRFE damper applications. DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVESTIGATION OF THE OPTIMAL SEMI-ACTIVE CONTROL STRATEGIES OF ADJACENT BUILDINGS CONNECTED WITH MAGNETORHEOLOGICAL DAMPERS

This study investigates the efficacy of optimal semi-active dampers for achieving the best results in seismic response mitigation of adjacent buildings connected to each other by magnetorheological (MR) dampers under earthquakes. One of the challenges in the application of this study is to develop an effective optimal control strategy that can fully utilize the capabilities of the MR dampers. H...

متن کامل

‘‘Smart’’ Base Isolation Systems

A ‘‘smart’’ base isolation strategy is proposed and shown to effectively protect structures against extreme earthquakes without sacrificing performance during the more frequent, moderate seismic events. The proposed smart base isolation system is composed of conventional low-damping elastomeric bearings and ‘‘smart’’ controllable ~semiactive! dampers, such as magnetorheological fluid dampers. T...

متن کامل

A magnetorheological fluid damper for robust vibration control of flexible rotor-bearing systems: A comparison between sliding mode and fuzzy approaches

Squeeze Film Dampers (SFD) are commonly used for passive vibration control of rotor-bearing systems. The Magnetorheological (MR) and Electrorheological (ER) fluids in SFDs give a varying damping characteristic to the bearing that can provide active control schemes for the rotor-bearing system. A common way to model an MR bearing is implementing the Bingham plastic model. Adding this model to th...

متن کامل

Controllable Shock and Vibration Dampers Based on Magnetorheological Fluids

Innovative magnetorheological dampers (MR dampers) for shock and vibration damping, based on magnetorheological fluids (MRFs), are described. Important fields of their application are loading processes, impact dampers in security systems as well as vibration dampers for machines and cars. Various models for describing the MR dampers are discussed. The characteristic feature of the MR dampers is...

متن کامل

Experimental Analysis of Magneto- Rheological Fluid (mrf) Dampers under Triangular Excitation

Magnetorheological dampers, or as they are more commonly called, MR dampers, are being developed for a wide variety of applications where controllable damping is desired. These applications include dampers for automobiles, heavy trucks, bicycles, prosthetic limbs, gun recoil systems, and possibly others. This paper first introduces MR technology through a discussion of MR fluids and then by giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005